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PointCloud-C: Benchmarking and Analyzing
Point Cloud Perception Robustness

under Corruptions
Jiawei Ren⋆, Lingdong Kong⋆, Liang Pan, and Ziwei Liu

Abstract—3D perception, especially point cloud classification and part segmentation, has achieved substantial progress. The advances
include new network architectures, data augmentation techniques, as well as new learning paradigms, such as 3D self-supervised
learning. However, in real-world deployment, point cloud corruptions are inevitable due to the scene complexity, sensor inaccuracy, and
processing imprecision. In this work, we aim to rigorously benchmark and analyze point cloud classification under corruptions. To conduct
a systematic investigation, we first provide a taxonomy of common 3D corruptions and identify the atomic corruptions. Then, we perform
a comprehensive evaluation of a wide range of representative point cloud models to understand their robustness and generalizability.
Our benchmark results show that although point cloud recognition performances improve over time, the state-of-the-art methods are on
the verge of being less robust. Based on the obtained observations, we propose several effective techniques to enhance point cloud
understanding robustness. We hope our comprehensive benchmark, in-depth analysis, and proposed techniques could spark future
research in robust 3D perception. The benchmark suite is available on our project page: https://pointcloud-c.github.io/home.

Index Terms—Point cloud recognition; out-of-distribution robustness; 3D data augmentation; robust architecture design & benchmark

✦

1 INTRODUCTION

Robustness to common corruptions is crucial to point cloud
understanding. Compared to RGB images, point cloud data
suffer more severe corruptions in real-world deployment
due to the inaccuracy in 3D sensors and complexity in
real-world 3D scenes [1], [2]. Furthermore, the point cloud
is widely employed in safety-critical applications such as
autonomous driving [3], [4]. Therefore, robustness to the
out-of-distribution (OOD) point cloud data caused by cor-
ruptions becomes an important part of the test suite since the
beginning of learning-based point cloud recognition [5], [6].

Ideally, robustness should be measured in a standard
way like how classification/segmentation accuracy and
computational cost are measured. However, prior research
evaluates point cloud understanding robustness in many
different protocols:
Protocol-1. Evaluate the robustness to a selected set of
corruptions [5], [8], [9], [13], [19], e.g., random point dropping
and random jittering. This evaluation method is popular in
point cloud research, as summarized in Table 1. However,
the freedom to select corruptions brings both positive and
negative effects to the evaluation. On the upside, customized
selection allows the evaluation to focus on the most char-
acteristic corruptions. On the downside, a selected set of
corruptions cannot provide a comprehensive evaluation
of a model’s robustness. In addition, different corruption
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Fig. 1: Blue curve shows overall accuracy (OA) on Mod-
elNet40 [7]. The red curve shows the mean Corruption
Error (mCE) on proposed ModelNet-C. Methods are sorted in
chronological order. OA gradually saturates but mCE is at
risk of increasing due to the lack of a standard test suite.

selections and training protocols in implementation also
make it difficult to compare across methods.
Protocol-2. Evaluate the robustness to the sim-to-real
gap [21], [22], e.g., train on ModelNet40 [7] and test on
ScanObjectNN [23]. To exploit the naturally occurring cor-
ruptions in real-world point cloud object datasets, robustness
is formulated as the generalizability from a synthetic training
set to a real test set. However, real-world corruptions
always come in a composite way, e.g., self-occlusion and
scanner noise, making it hard to analyze each corruption
independently. Besides, the sim-to-real performance gap
couples with the domain gap within each category, e.g., a
chair in ModelNet40 [7] and ScanObjectNN [23] may have
different styles, which obfuscates the evaluation results.
Protocol-3. Evaluate the robustness to adversarial attack [24],
[25], [26], e.g., adversarial point shifting and dropping. Differ-

https://pointcloud-c.github.io/home
ziwei.liu@ntu.edu.sg
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TABLE 1: Corruptions studied in the existing robustness analysis. Prior works evaluate point cloud recognition robustness on
different sets of corruptions, and hence their evaluations can be partial and unfair. To standardize the corruption evaluation,
our test suite PointCloud-C includes all previously studied corruptions, including “Jitter”, “Drop Global/Local”, “Add
Global/Local”, “Scale”, and “Rotate”.

Method Jitter Drop Global Drop Local Add Global Add Local Scale Rotate

PointNet [5] ✓ ✓ ✓
ECC [6] ✓ ✓

PointNet++ [8] ✓
DGCNN [9] ✓
RSCNN [10] ✓ ✓

PointASNL [2] ✓ ✓
Orderly Disorder [11] ✓

PointAugment [12] ✓ ✓ ✓ ✓
PointMixup [13] ✓ ✓ ✓ ✓

PAConv [14] ✓ ✓ ✓
OcCo [15] ✓

Triangle-Net [16] ✓ ✓ ✓ ✓
Curve-Net [17] ✓ ✓

RSMix [18] ✓ ✓ ✓ ✓
PointWolf [19] ✓ ✓ ✓ ✓
GDANet [20] ✓ ✓

PointCloud-C (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Fig. 2: Point cloud classifier’s robustness to various corrup-
tions in a radar chart. Proposed PointCloud-C allows fine-
grained corruption analysis. Different architectures have
diverse strengths and weaknesses to corruptions. ”-G”: -
Global. ”-L”: -Local.

ent from real-world scenarios where corruptions are drawn
from natural distributions, adversarial attacks corrupt point
clouds for the purpose to deceive a classifier while keeping
the attacked point cloud similar to the input. Therefore,
adversarial robustness is a good measure of a model’s worst-
case performance but can not reflect a point cloud classifier’s
robustness to common corruptions in the natural world.

Despite various ways to evaluate a point cloud classifier’s
robustness, there lacks a standard, comprehensive bench-
mark for point cloud classification under corruptions. In
this work, we present a full corruption test suite to close
this gap. First, we break down real-world corruptions in

Protocol-2 into 7 fundamental atomic corruptions as shown
in Figure 3, which also forms a superset of the ad-hoc
corruption selections in Protocol-1. As we aim to measure
real-world robustness, adversarial attacks in Protocol-3 are
excluded. Then, we apply the corruptions to the validation
sets of ModelNet40 [7] and ShapeNet [27] as our corruption
test suite dubbed PointCloud-C, which includes ModelNet-
C and ShapeNet-C. Inspired by the 2D image classification
robustness benchmark [28], we further create 5 severity
levels for each atomic corruption and use mean the mean
Corruption Error (mCE) metric for evaluation. Finally, based
on the test suite, we benchmark 17 point cloud classification
methods, including 11 architectures, 3 augmentations, and
3 pretrains. As shown in Figure 2, our benchmark results
show that although point cloud classification performance
on the clean ModelNet40 [7] improves by time, state-of-the-art
(SoTA) methods are on the verge of being less robust.

To remedy the issue, we conduct an in-depth analysis
of the benchmark results and summarize two effective tech-
niques to enhance point cloud classifier robustness. Strictly
following the best design choice summarized from the bench-
mark results, we present Robust Point cloud Classifier (RPC),
a robust network architecture for point cloud classification,
which achieves the least mCE on ModelNet-C benchmark, and
comparable overall accuracy on the clean ModelNet40 [7]
with the SoTAs. In particular, we present WOLFMix, a strong
augmentation baseline that exploits both deformation-based
augmentation and mix-based augmentation to provide a
stronger regularization. Empirically, WOLFMix achieves the
best robustness results compared to existing augmentation
techniques. According to our experimental results, the per-
formance gain by augmentations does not equally transfer
to all model architectures. We identify the best combination
from existing methods and call for a model design that fully
exploits the augmentation power.

Our contributions are summarized as follows:
• We present the first systematically-designed test-suite

PointCloud-C for point cloud classification and part
segmentation under corruptions.

• We comprehensively benchmark various existing meth-
ods on their robustness to corruptions.
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Fig. 3: Corruption taxonomy. We break down common corruptions into detailed corruption sources on object-, senor- and
processing levels, which are further simplified into a combination of seven atomic corruptions for a more controllable
empirical analysis.

• We summarize several effective techniques, such as RPC
and WOLFMix, to enhance the point cloud classifier’s
robustness and identify that the synergy between ar-
chitecture and augmentation should be considered in
future research.

2 RELATED WORKS

Point Cloud Classification and Part Segmentation. Point
cloud classification and part segmentation serve as fun-
damental tasks for 3D understanding from raw hardware
inputs. Learning-based point cloud processors have diverse
architectural designs. There are MLP-based models [5],
[8], convolution-based models [10], [14], graph-based mod-
els [6], [9] and recently proposed transformer-based mod-
els [29], [30], [31]. Besides, there is a rising discussion on
point cloud augmentation, including mix-based augmen-
tations [13], [18], deformation-based augmentations [19]
and auto-augmentations [12]. Moreover, self-supervised pre-
train has drawn much research attention recently. Pre-trains
obtained from pre-text tasks like occlusion reconstruction [15]
and mask inpainting [32] provide better classification perfor-
mance than random initialization.
Robustness in Point Cloud. Several attempts are made to
improve the point cloud classifier’s robustness. Triangle-
Net [16] designs feature extraction that is invariant to
positional, rotational and scaling disturbances. Although
Triangle-Net [16] achieves exceptional robustness under
extreme corruptions, its performance on clean data is not
on par with SoTA. PointASNL [2] introduces adaptive
sampling and local-nonlocal modules to improve robustness.
However, PointASNL [2] takes a fixed number of points in
implementation. Other works improve a model’s adversarial
robustness by denoising and upsampling [24], voting on
subsampled point clouds [33], exploiting local feature’s
relative position [25] and self-supervision [26].
Robustness Benchmarks in Image Classification. A com-
prehensive robustness benchmark has been built for 2D
image classification recently. ImageNet-C [28] corrupts the
ImageNet [34]’s test set with simulated corruptions like
compression loss and motion blur. ObjectNet [35] collects
a test set with rich variations in rotation, background, and
viewpoint. ImageNetV2 [36] re-collects a test set following
ImageNet’s protocol and evaluates the performance gap due
to the natural distribution shift. Moreover, ImageNet-A [37]

and ImageNet-R [38] benchmark the classifier’s robustness to
natural adversarial examples and abstract visual renditions.

3 CORRUPTIONS TAXONOMY AND TEST SUITE

3.1 Corruptions Taxonomy
Real-world corruptions come from a wide range of sources,
based on which we provide a taxonomy of the corruptions
in Figure 3. Common corruptions are categorized into
three levels: object-level, sensor-level, and processing-level
corruptions. Object-level corruptions come inherently in
complex 3D scenes, where an object can be occluded by
other objects or parts of itself. Different viewpoints also
introduce variations to the point cloud data in terms of
rotation. Note that viewpoint variation also leads to a
change in self-occlusion. Sensor-level corruptions happen
when perceiving with 3D sensors like LiDAR. As discussed
in prior works [1], [39], sensor-level corruptions can be
summarized as 1) dropout noise, where points are missing
due to sensor limitations; 2) spatial inaccuracy, where point
positions, object scale, and angle can be wrongly measured;
3) outliers, which are caused by the structural artifacts in the
acquisition process. More corruptions could be introduced
during postprocessing. For example, inaccurate point cloud
registration leads to misalignment. Background remain and
imperfect bounding box are two common corruptions during
3D object scanning.

However, it is challenging to directly simulate real-
world corruptions for the following reasons. 1) Real-world
corruptions have a rich variation, e.g., different hardware may
have different sensor-level corruptions. 2) The combination
of inter-object occlusion or background remains can be
inexhaustive. 3) Moreover, a few corruptions lead to the
same kind of operations to point clouds, e.g., self-occlusion,
inter-object occlusion, and cropping error all lead to the
missing a local part of the object. To this end, we simplify
the corruption taxonomy into seven fundamental atomic cor-
ruptions: “Add Global”, “Add Local”, “Drop Global”, “Drop
Local”, “Rotate”, “Scale”, and “Jitter”. Consequently, each
real-world corruption is broken down into a combination
of the atomic corruptions, e.g., background remain can be
viewed as a combination of “Add Local” and “Add Global”.

Although atomic corruptions cannot seamlessly simulate
real-world corruptions, they provide a practical solution
to achieve controllable empirical study on fundamentally
analyzing point cloud classification robustness. Note that
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Fig. 4: Examples of ModelNet-C. We corrupt the clean test
set of ModelNet40 [7] using seven types of corruptions with
five levels of severity to provide a comprehensive robustness
evaluation. The listed examples are from severity level 2.
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Fig. 5: Examples of our proposed ShapeNet-C. Similar to
ModelNet-C, we corrupt the clean test set of ShapeNet [27]
using seven types of corruptions with five levels of severity.
The listed examples are from severity level 2.

noisy translation and random permutation are not con-
sidered in this work, because point cloud normalization
and permutation-invariance are two basic properties among
recent point cloud recognition approaches.

3.2 PointCloud-C: A Robustness Test Suite
3.2.1 ModelNet-C for Point Cloud Classification
ModelNet40 [7] is one of the most commonly used bench-
marks in point cloud classification, and it collects 12,311
CAD models in 40 categories (9,843 for training and 2,468
for testing). Most recent point cloud classification methods
follow the settings of PointNet [5], which samples 1024 points
from each aligned CAD model and then normalizes them
into a unit sphere. Based on ModelNet40 [7] and the settings
by [5], we further corrupt the ModelNet40 [7] test set with
the aforementioned seven atomic corruptions to establish
a comprehensive test-suite ModelNet-C. To achieve fair
comparisons and meanwhile following the OOD evaluation
principle, we use the same training set with ModelNet40 [7].

Similar corruption operations are strictly not allowed during
the model training phase.

The seven atomic corruptions are implemented as follows:
“Scale” applies a random anisotropic scaling to the point
cloud; “Rotate” rotates the point cloud by a small angle;
“Jitter” adds a Gaussian noise to point coordinates; “Drop
Global” randomly drops points from the point cloud; “Drop
Local” randomly drops several k-NN clusters from the point
cloud; “Add Global” adds random points sampled inside
a unit sphere; “Add Local” expand random points on the
point cloud into normally distributed clusters. The examples
of corrupted point clouds from ModelNet-C are shown in
Figure 4. In addition, we set different five severity levels for
each corruption, based on which we randomly sample from
the atomic operations to form a composite corruption test set.
Note that we restrict the rotation to small angle variations,
as in real-world applications we mostly observe objects from
common viewpoints with small variations. Robustness to
arbitrary SO(3) rotations is a specific challenging research
topic [40], [41], which is out of the scope of this work.

3.2.2 ShapeNet-C for Part Segmentation

In a similar manner to ModelNet-C, we curate a corrupted
part segmentation dataset dubbed as ShapeNet-C. ShapeNet-
C is built upon the standard part segmentation dataset,
the ShapeNet part dataset [42]. The ShapeNet part dataset
includes 16,881 objects from 16 object-level categories and 50
part-level categories, with 2,048 points in each object.

We apply the same corruption taxonomize in subsec-
tion 3.1 to the ShapeNet test set to curate ShapeNet-C. For
each corruption type, we set five increasing severity levels.
We show the corrupted examples in Figure 5

3.3 Evaluation Metrics

To normalize the severity of different corruptions, we choose
DGCNN, a classic point cloud classification method, as
the baseline. Inspired by the 2D robustness evaluation
metrics [28], we use mean CE (mCE), as the primary metric.
To compute mCE, we first compute CE. For classification:

CEi =

∑5
l=1(1− OAi,l)∑5

l=1(1− OADGCNN
i,l )

, (1)

where OAi,l is the overall accuracy on a corrupted test set i
at corruption level l, OADGCNN

i,l is baseline’s overall accuracy.
For part segmentation:

CEi =

∑5
l=1(1− mIoUi,l)∑5

l=1(1− mIoUDGCNN
i,l )

, (2)

where mIoUi,l is the mean Intersection of Union on a
corrupted test set i at corruption level l, mIoUDGCNN

i,l is
baseline’s mIoU.

mCE is the average of CE over all seven corruptions:

mCE =
1

N

N∑
i=1

CEi, (3)
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Fig. 6: Visualizations of ModelNet-C on all severity levels.

where N = 7 is the number of corruptions. We also compute
Relative mCE (RmCE), which measures performance drop
compared to a clean test set as:

RCEi =

∑5
l=1(OAClean − OAi,l)∑5

l=1(OADGCNN
Clean − OADGCNN

i,l )
, (4)

RmCE =
1

N

N∑
i=1

RCEi, (5)

where OAClean is the overall accuracy on the clean test set.

3.4 Evaluation Protocol

Because most SoTA methods adopt the DGCNN protocal [43],
we also use it as the consistent protocol for the benchmark.
Two conventional augmentations are used during training: 1)
random anisotropic scaling in the range [2/3, 3/2]; 2) random
translation in the range [-0.2, +0.2]. Note that the random
scaling ranges for training and testing are not overlapped.
Point cloud sampling is fixed during training, and no voting
is used in the inference stage. For each method, we select the
model that performs the best on the clean ModelNet40 [7]
and ShapeNet [27] test sets during evaluation. We highlight
that the same corruptions are not allowed during training
to reflect model OOD generalizability. The following works
are recommended to specify augmentations in training when
reporting results on our PointCloud-C.

Fig. 7: Visualizations of ShapeNet-C on all severity levels.

Augmentation

Self-supervision ‘table’

Architecture 𝜃" 𝜃Initialize

Fig. 8: Robust point cloud understanding paradigm. Point
cloud recognition robustness to various corruptions largely
depends on three main components: architecture design, self-
supervised pretraining, and augmentation techniques.

4 SYSTEMATIC BENCHMARKING

4.1 Benchmarked Methods

We benchmark 17 methods in total, covering three key
components for robust point cloud classification and part seg-
mentation, as shown in Figure 8. Architectures: PointNet [5],
PointNet++ [8], DGCNN [9], RSCNN [10], SimpleView [43],
GDANet [20], CurveNet [17], PAConv [14], PCT [29], Point-
Transformers [30], and Point-MLP [44]. Pretrains: OcCo [15],
Point-BERT [32], and Point-MAE [45]. Augmentation: Point-
Mixup [13], RSMix [18], and PointWOLF [19]. For PointNet,
PointNet++, DGCNN, RSCNN, and SimpleView, we use the
pretrained models provided by [43]. For CurveNet, GDANet,
and PAConv, we use their official pretrained models. The
rest of the models are trained using their official code.
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4.2 Corruptions and Severity Level Settings

In this section, we elaborate on the implementation of
corruptions and severity level settings. A visualization is
shown in Figure 6.
Jitter. We add a Gaussian noise ϵ ∈ N (0, σ2) to each
of a point’s X, Y, and Z coordinates, where σ ∈
{0.01, 0.02, 0.03, 0.04, 0.05} for the five levels.
Scale. We apply random scaling to the X, Y, and Z axis respec-
tively. The scaling coefficient for each axis are independently
sampled as s ∼ U(1/S, S), where S ∈ {1.6, 1.7, 1.8, 1.9, 2.0}
for the five levels. Point clouds are re-normalized to a unit
sphere after scaling.
Rotate. We randomly apply a rotation described by an X-Y-
Z Euler angle (α, β, γ), where α, β, γ ∼ U(−θ, θ) and θ ∈
{π/30, π/15, π/10, π/7.5, π/6} for the five levels. Note that
the sampling method does not guarantee a uniform SO(3)
rotation sampling, but is sufficient to cover a range of rotation
variations.
Drop Global. We randomly shuffle all points and drop the
last N ∗ ρ points, where N = 1024 is the number of points
in the point cloud and ρ ∈ {0.25, 0.375, 0.5, 0.675, 0.75} for
all five levels.
Drop Local. We drop K points in total, where K ∈
{100, 200, 300, 400, 500} for the five levels. We randomly
choose C , the number of local parts to drop, by C ∈ U{1, 8}.
We further randomly assign i-th local part a cluster size Ni so
that K =

∑C
i=1 Ni. Then we repeat the following steps for C

times: we randomly select a point as the i-th local center and
drop its Ni-nearest neighbor points (including itself) from
the point cloud.
Add Global. We uniformly sample K points inside a
unit sphere and add them to the point cloud, where
K ∈ {10, 20, 30, 40, 50} for the five levels.
Add Local. We add K points in total, where K ∈
{100, 200, 300, 400, 500} for the five levels. We randomly
shuffle the points and select the first C ∈ U{1, 8} points
as the local centers. We further randomly assign i-th local
part a cluster size Ni so that K =

∑C
i=1 Ni. Neighbouring

point’s X-Y-Z coordinates are generated from a Normal
distribution N (µi, σ

2
i I), where µi is the i-th local center’s

X-Y-Z coordinate and σi ∈ U(0.075, 0.125). We then add
each local part to the point cloud one by one.

4.3 Main Results

Benchmark results (mCE) are reported in Table 3, Table 4
and Table 5 for architectures, pretrains, and augmentations,
respectively. RmCE and Overall Accuracy are reported
Table 7. In Figure 2, we sort benchmarked architectures in
chronological order and visualize second-order polynomial
fitting results with a 50% confidence interval. We observe
that although the new architecture’s performance is con-
stantly progressing and saturates around 0.94, their mCE
performance shows a large variance. We also observe that
self-supervised pretraining is able to transfer the pretrain
signal to the downstream model, but has a mixed effect
on the overall performance. Moreover, recent point cloud
augmentations can substantially improve robustness.

TABLE 2: Systematic study for architecture design.

Representation Local
Operation

Advanced
Grouping Featurizer mCE ↓

PointNet 3D No No Conventional 1.422
PointNet++ 3D Ball-query No Conventional 1.072
DGCNN 3D k-NN No Conventional 1.000
RSCNN 3D Ball-query No Adaptive 1.130
PAConv 3D k-NN No Adaptive 1.104
CurveNet 3D k-NN Curve Conventional 0.927
GDANet 3D k-NN Frequency Conventional 0.892
PCT 3D k-NN No Self-attention 0.925
SimpleView 2D - - - 1.047

RPC (Ours) 3D k-NN Frequency Self-attention 0.863

PCD Featurizer PredictionLocal Ops

Advanced 
Grouping

2D
Projection CNN

Repeat

Fig. 9: Key components in architecture design. Point cloud
data (PCD) repeatedly goes through local operations, ad-
vanced grouping, and featurization before being classified.
Alternatively, PCD may be projected into multi-view images
and processed by traditional CNN backbones. This figure
means to show how key components are usually connected,
but not to faithfully show every detailed architecture design.

5 COMPREHENSIVE ANALYSIS

5.1 Architecture Design
We analyze four key components of point cloud classifier
architectures: local operations, advanced grouping, featurizer,
and representation dimension, as illustrated in Figure 9. The
design choices of recent classifier architectures are summa-
rized in Table 2. When analyzing a specific component, we
group all methods that utilize the component. Since design
choices are not rigorously controlled variables in the analysis,
we visualize the 95% confidence interval together with the
mean value in the bar charts, and only low variance results
are considered in our conclusion. Furthermore, to empirically
verify our conclusion, we build a new architecture, RPC,
strictly following the conclusions.
Local Operations. We compare the robustness of different
local aggregations, including no local operations, k-NN,
and ball-query. As shown in Figure 10a, the exploitation
of the point cloud locality is a key component to robustness.
Without local aggregations, PointNet [5] (shown as “No Local
Ops.”) has the highest mCE. Considering each corruption
individually, PointNet is on the two extremes: it shows the
best robustness to “Jitter” and “Drop-G”, meanwhile being
one of the worst methods for the rest corruptions. Local
operations target to encode informative representations by
exploiting local geometric features. Ball-query randomly
samples neighboring points in a predefined radius, while
k-NN focuses on the nearest neighboring points. Generally, k-
NN performs better than ball-query in the benchmark, especially
for “Drop-L”. The reason is that points surrounding the
dropped local part will lose their neighbors in ball-query due
to its fixed searching radius, but k-NN will choose neighbors
from the remaining points. However, ball-query shows the
advantage over k-NN in “Add-G”, since, for a point on the
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TABLE 3: Architectures. Bold: best in column. Underline: second best in column. Blue: best in row. Red: worst in row.

Method OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate

DGCNN [9] 0.926 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
PointNet [5] 0.907 1.422 1.266 0.642 0.500 1.072 2.980 1.593 1.902

PointNet++ [8] 0.930 1.072 0.872 1.177 0.641 1.802 0.614 0.993 1.405
RSCNN [10] 0.923 1.130 1.074 1.171 0.806 1.517 0.712 1.153 1.479

SimpleView [43] 0.939 1.047 0.872 0.715 1.242 1.357 0.983 0.844 1.316
GDANet [20] 0.934 0.892 0.830 0.839 0.794 0.894 0.871 1.036 0.981

CurveNet [17] 0.938 0.927 0.872 0.725 0.710 1.024 1.346 1.000 0.809
PAConv [14] 0.936 1.104 0.904 1.465 1.000 1.005 1.085 1.298 0.967

PCT [29] 0.930 0.925 0.872 0.870 0.528 1.000 0.780 1.385 1.042

RPC (Ours) 0.930 0.863 0.840 0.892 0.492 0.797 0.929 1.011 1.079

TABLE 4: Pretrain. Bold: best in column. Underline: second best in column. Blue: best in row. Red: worst in row. †: Randomly
initialized.

Method OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate

DGCNN [9] 0.926 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
+OcCo [15] 0.922 1.047 1.606 0.652 0.903 1.039 1.444 0.847 0.837

Point-BERT† 0.919 1.317 0.936 0.987 0.899 1.295 2.336 1.360 1.409
+Point-BERT [32] 0.922 1.248 0.936 1.259 0.690 1.150 1.932 1.440 1.326

TABLE 5: Augmentation. Bold: best in column. Underline: second best in column. Blue: best in row. Red: worst in row.

Method OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate

DGCNN [9] 0.926 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
+PointWOLF [19] 0.926 0.814 0.926 0.864 0.988 0.874 0.807 0.764 0.479

+RSMix [18] 0.930 0.745 1.319 0.873 0.653 0.589 0.281 0.629 0.870
+WOLFMix (Ours) 0.932 0.590 0.989 0.715 0.698 0.575 0.285 0.415 0.451

PointNet++ [8] 0.930 1.072 0.872 1.177 0.641 1.802 0.614 0.993 1.405
+PointMixUp [13] 0.915 1.028 1.670 0.712 0.802 1.812 0.458 0.615 1.130

TABLE 6: Results of combining WOLFMix with different architectures. Bold: best in column. Underline: second best in
column. Blue: best in row. Red: worst in row. †: evaluated on the final epoch.

Method OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate

DGCNN [9] 0.926 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
+WOLFMix (Ours) 0.932 0.590 0.989 0.715 0.698 0.575 0.285 0.415 0.451

PointNet [5] 0.907 1.422 1.266 0.642 0.500 1.072 2.980 1.593 1.902
+WOLFMix (Ours) 0.884 1.180 2.117 0.475 0.577 1.082 2.227 0.702 1.079

PCT [29] 0.930 0.925 0.872 0.870 0.528 1.000 0.780 1.385 1.042
+WOLFMix (Ours) 0.927 0.786 0.894 0.991 0.464 1.000 0.610 1.091 0.451

GDANet [20] 0.934 0.892 0.830 0.839 0.794 0.894 0.871 1.036 0.981
+WOLFMix (Ours) 0.934 0.571 0.904 0.883 0.532 0.551 0.305 0.415 0.409

RPC (Ours) 0.930 0.863 0.840 0.892 0.492 0.797 0.929 1.011 1.079
+WOLFMix (Ours) 0.933 0.917 0.979 1.203 0.556 0.908 1.319 0.993 0.465

+WOLFMix† (Ours) 0.923 0.714 0.947 0.829 0.516 0.908 0.678 0.669 0.451

object, outliers are less likely to fall in the query ball than to
be its nearest neighbors.

Advanced Grouping. Recent methods design advanced
grouping techniques, such as Frequency Grouping [20]
and Curve Grouping [17], to introduce structural prior
into architecture design. Frequency grouping uses a graph
high-pass filter [46], [47] to group point features in the
frequency domain. Curve grouping forms a curve-like point
set {P1, P2, ...PN} by walking from Pi to Pi+1 following
a learnable policy π. As shown in Figure 10b, we ob-
serve that both grouping techniques improve model robustness
by a clear margin. The idea of frequency grouping aligns
with the observations in [48]: there is a trade-off between
model robustness to low-frequency corruptions and high-
frequency corruptions. By viewing local-grouped features

as low-frequency features and curve-grouped features as
high-frequency features, the robustness gain can be again
interpreted from a frequency perspective. Nonetheless, it is
noteworthy that advanced grouping is more time-consuming
during both training and testing.

Featurizer. We refer to conventional operators as shared
MLPs and convolutional layers, which are common building
blocks for point cloud models. Recent works explore various
advanced feature processing methods, such as adaptive
kernels and self-attention operations. RSCNN [10] and
PAConv [14] design adaptive kernels whose weights change
with low-level features like spatial coordinates and surface
normals. Based on self-attention, PCT [29] proposes the offset-
attention operation, which achieves impressive performance
for point cloud analysis. Despite the success of RSCNN [10]
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TABLE 7: Full results for Relative mCE. Bold: best in column. Underline: second best in column. Blue: best in row. Red:
worst in row. †: random initialized. ‡: evaluate on the final epoch.

Method RmCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate

DGCNN [9] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
PointNet [5] 1.488 1.300 0.455 0.178 0.970 3.557 1.716 2.241

PointNet++ [8] 1.114 0.600 1.248 0.511 2.278 0.502 1.010 1.645
RSCNN [10] 1.201 1.200 1.211 0.707 1.782 0.602 1.194 1.709

SimpleView [43] 1.181 1.050 0.682 1.420 1.654 1.036 0.851 1.574
GDANet [20] 0.865 0.600 0.822 0.753 0.895 0.864 1.090 1.028

CurveNet [17] 0.978 1.000 0.690 0.655 1.128 1.516 1.060 0.794
PAConv [14] 1.211 1.050 1.649 1.057 1.083 1.158 1.458 1.021

PCT [29] 0.884 0.600 0.847 0.351 1.030 0.724 1.547 1.092
RPC (Ours) 0.778 0.450 0.876 0.299 0.714 0.923 1.035 1.149

DGCNN+OcCo [15] 1.302 3.650 0.529 0.839 1.030 1.575 0.771 0.723

Point-BERT† 1.330 0.350 0.955 0.816 1.406 2.751 1.458 1.574
Point-BERT [32] 1.262 0.500 1.322 0.534 1.203 2.226 1.582 1.468

PN2+PointMixUp [13] 1.254 3.600 0.579 0.655 2.180 0.226 0.418 1.121
DGCNN+PointWOLF [19] 0.698 0.650 0.822 0.983 0.805 0.742 0.677 0.206

DGCNN+RSMix [18] 0.839 2.700 0.851 0.529 0.391 0.059 0.512 0.830
DGCNN+WOLFMix (Ours) 0.485 1.250 0.653 0.603 0.383 0.072 0.229 0.206

PCT+WOLFMix (Ours) 0.653 0.550 0.992 0.241 1.008 0.484 1.129 0.170
GDANet+WOLFMix (Ours) 0.439 0.950 0.880 0.379 0.361 0.109 0.239 0.156

RPC+WOLFMix (Ours) 0.940 1.250 1.293 0.408 0.910 1.457 1.025 0.234

RPC+WOLFMix‡ (Ours) 0.532 0.600 0.764 0.293 0.835 0.557 0.532 0.142

and PAConv [14] on clean point cloud classifications, they
tend to be more sensitive to corruptions than conventional
operators in our experiments shown in Figure 10c. Data
corruption exacerbates through data-dependent kernels.
Compared to conventional operators, self-attention operations
improve classifier robustness in several aspects, particularly in
“Drop-G”. We speculate that its robustness gains to “Drop-
G” come from its ability to understand non-local relations
from the global perspective. Note that Point-BERT [32] also
introduces a self-attention-based architecture. However, it
includes a fixed tokenizer that is trained on pretext tasks,
which could be the bottleneck for its robustness performance.
Therefore, we do not include the randomly initialized Point-
BERT [32] result in the architecture analysis.
2D vs. 3D Representation. A few methods [43], [49] first
project 3D shapes to 2D frames from different viewpoints,
and then use 2D classifiers for recognizing 3D points. The
recently proposed projection-based method, SimpleView [43]
performs surprisingly well on clean 3D point clouds. In our
experiments shown in Figure 10d, projecting 3D points to 2D
images brought mixed effects to classification. The projection
significantly reduces the effect of “Jitter” and “Add-L”,
but suffers a lot from point scarcity, particularly “Drop-
G”. This is consistent with human visual perception, as
it is challenging for human vision to recognize the shape
from point projections, especially for sparse and noisy points
without texture information. Adding more observations from
different perspectives might improve 2D perception accuracy,
while extra efforts are required. In a nutshell, we think 3D
cues are more straightforward and preferable for building a
robust point cloud classifier.

5.2 Self-Supervised Pretraining

Recently, various self-supervised pretrain methods have been
proposed for point cloud classification models, such as Point-
BERT [32] and OcCo [15]. We study their robustness against
corruptions in Figure 10e, which reveals that pretrain signals
can be transferred, and hence benefiting classification under

specific corruptions. During self-supervised pretrain, Point-
BERT [32] first drops points using the block-wise masking
strategy and then reconstructs the missing points based on
the rest points. Interestingly, models finetuned on Point-
BERT [32] pretrain show better classification robustness when
the local part is missing. OcCo [15] employs a similar recon-
struction pretrain task, but with a different masking strategy.
By observing from different camera views, OcCo [15] masks
the points that are self-occluded. Meanwhile, point clouds are
also rotated with different camera angles. Consequently, the
OcCo [15] pretrained models are significantly more robust to
rotation perturbations. Moreover, OcCo [15] also improves
the robustness to “Jitter” and “Add-L”.

5.3 Augmentation Method

Following the principle of OOD evaluation, the corruptions
should not be used as augmentations during training, and
therefore we choose mixing and deformation augmentations.
As shown in Figure 10f, mixing and deformation augmentations
can bring significant improvements to model robustness. Point-
MixUp [13] and RSMix [18] are two mix strategies. Similar
to MixUp [50] in 2D augmentation, PointMixup mixes two
point clouds using shortest-path interpolation. Similar to
CutMix [51] in 2D augmentation, RSMix [18] mixes two
point clouds using rigid transformation. Both mix strategies
substantially reduce CE on corruptions including “Add-G”,
“Add-L”, “Rotate” and “Jitter”. However, an unexpected
side effect of the mix strategies is that classifiers become
more vulnerable to scaling effects. By non-rigidly deforming
local parts of an object, PointWOLF [19] enriches the data
variation, which constantly improves recognition robustness
on all evaluated corruptions.

6 BOOSTING CORRUPTION ROBUSTNESS

Based on the above observations, we propose to improve
point cloud recognition robustness in the following ways.
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Fig. 10: Analysis on different architecture designs, pretrain strategies and augmentation strategies’ effect to classifier’s
performance under different corruptions. ”-G”: Global. ”-L”: Local.

6.1 RPC: A Robust Point Cloud Classifier
Following the conclusions in the architecture analysis, we
construct RPC using 3D representation, k-NN, frequency
grouping, and self-attention. We show a detailed architecture
of RPC in Figure 11. As reported in Table 3, RPC achieves
the best mCE compared to all SoTA methods. The success of
RPC empirically verifies our conclusions on the architecture
design choices, and it could serve as a strong baseline for
future robustness research.

6.1.1 Hyperparameters
For local operation, we use k=30 for the number of neighbors
in k-NN. For, frequency grouping, we follow the default
hyper-parameters in GDANet [20]. The number of points in
each frequency component is set to 256.

6.1.2 Training
We train the model for 250 epochs with a batch size of 32. We
use SGD with a momentum of 0.9 for optimization. We use a
cosine annealing scheduler to gradually decay the learning
rate from 1e-2 to 1e-4.

6.2 WOLFMix: A Strong Augmentation Strategy
We design WOLFMix upon two powerful augmentation
strategies, PointWOLF [19] and RSMix [18].

During training, WOLFMix first deforms the object,
and then rigidly mixes the two deformed objects together.
Ground-truth labels are mixed accordingly. We show an
illustration of WOLFMix in Figure 12.

Concretely, for the deformation step, we use the default
hyper-parameters in PointWOLF [19]. We set the number of

anchors to 4, the sampling method to farthest point sampling,
kernel bandwidth to 0.5, maximum local rotation range to
10 degrees, maximum local scaling to 3, and maximum
local translation to 0.25. AugTune proposed along with
PointWOLF [19] is not used in training. For the mixing step,
we use the default hyper-parameters in RSMix [18]. We set
RSMix probability to 0.5, β to 1.0, and a maximum number
of point modifications to 512. For training, the number of
neighbours in k-NN is reduced to 20 and the number of
epochs is increased to 500 for all methods.

By taking advantage of both rigid and non-rigid transfor-
mations, WOLFMix brings substantial robustness gain over
standalone PointWOLF [19] and RSMix [18] in Table 5.

Synergy between Architecture and Augmentation. We ob-
serve that augmentation techniques do not equally transfer to
different architectures. Table 6 shows that the improvement
by WOLFMix on corruption robustness varies drastically
with different models. Although RPC achieves the lowest
standalone mCE, its improvements by WOLFMix are much
less than WOLFMix for DGCNN [9] or GDANet [20]. We
notice that the final epoch model outperforms the best model
on the clean test set, but still has a gap from top-performing
methods. PointNet [5] and PCT [29] enjoy limited robustness
gain as well. Hence, we speculate that there is a capacity
upper bound to corruptions for each architecture. Future
classification robustness research is suggested to study: 1)
standalone robustness for architecture and augmentations
independently; and 2) their synergy in between. Furthermore,
we identify that training GDANet [20] with WOLFMix
achieves the best robustness in all existing methods, with an
impressive 0.571 mCE.
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Fig. 11: Detailed architecture of RPC. We design RPC following the conclusions we draw from the benchmark. It optimizes
the use of existing building blocks in point cloud classifiers and serves as a strong baseline for corruption robustness.

TABLE 8: Results for mCE on ShapeNet-C. Bold: best in column. Underline: second best in column. Blue: best in row. Red:
worst in row. mIoU: average IoU over all corruptions.

Method mIoU↑ mCE↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate

DGCNN [9] 0.852 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
PointNet [5] 0.833 1.178 1.082 1.050 0.983 1.132 1.386 1.173 1.438

PointNet++ [8] 0.857 1.112 0.950 1.081 0.856 1.983 0.886 1.083 0.947
PAConv [14] 0.859 0.927 0.927 1.072 0.925 0.927 0.743 0.948 0.948

GDANet [20] 0.857 0.923 0.922 1.012 0.942 0.946 0.712 0.957 0.969
PointTransformers [30] 0.840 1.049 1.076 1.072 1.032 1.081 1.112 1.066 0.907

Point-MLP [44] 0.853 0.977 0.965 1.132 0.887 0.991 0.929 1.061 0.876

OcCo-DGCNN [15] 0.851 0.977 0.963 1.068 0.957 1.020 0.942 0.998 0.890
OcCo-PointNet [15] 0.832 1.130 1.108 1.037 0.964 1.102 1.221 1.125 1.351

OcCo-PCN [15] 0.815 1.173 1.228 1.042 1.081 1.181 1.065 1.148 1.465
Point-BERT [32] 0.855 1.033 0.938 1.098 0.873 0.927 1.170 1.199 1.025
Point-MAE [45] 0.860 0.927 0.908 1.035 0.852 0.882 0.776 1.031 1.003

TABLE 9: Results for Relative mCE (RmCE) on ShapeNet-C. Bold: best in column. Underline: second best in column. Blue:
best in row. Red: worst in row. mIoU: average IoU over all corruptions.

Method mIoU↑ RmCE↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate

DGCNN [9] 0.852 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
PointNet [5] 0.833 1.056 0.355 0.880 0.087 1.152 1.566 1.206 2.144

PointNet++ [8] 0.857 1.850 0.685 1.329 0.176 7.860 0.830 1.169 0.901
PAConv [14] 0.859 0.848 0.560 1.336 0.764 0.789 0.597 0.947 0.940

GDANet [20] 0.857 0.785 0.264 1.115 0.806 0.842 0.535 0.952 0.979
PointTransformer [30] 0.840 0.933 0.981 1.051 0.728 1.077 1.133 1.054 0.507

Point-MLP [44] 0.853 0.810 0.474 1.428 0.217 0.961 0.882 1.109 0.601

OcCo-DGCNN [15] 0.851 0.804 0.224 1.196 0.630 1.078 0.894 0.988 0.617
OcCo-PointNet [15] 0.832 0.937 0.674 0.822 −0.086 0.909 1.281 1.117 1.842

OcCo-PCN [15] 0.815 0.882 0.846 0.581 0.026 0.766 0.934 1.070 1.951
Point-BERT [32] 0.855 0.895 0.283 1.356 0.213 0.619 1.303 1.360 1.128
Point-MAE [45] 0.860 0.703 0.180 1.209 0.222 0.459 0.650 1.088 1.114

7 PART SEGMENTATION ROBUSTNESS

We further study the point cloud part segmentation task to
generalize the analysis to the generic point cloud processing.
Based on ShapeNet-C, we benchmark on seven different archi-
tectures and three different unsupervised pretrain methods.
Architectures: PointNet [5], PointNet++ [8], DGCNN [9],
PAConv [14], GDANet [20], PointTransformers [30] and
Point-MLP [44]. Pretrain: OcCo [15], Point-BERT [32], and
Point-MAE [45]. We have not benchmarked augmentation
techniques due to the insufficiency of existing works. We
show the experiment results in Table 8 and Table 9.

Note that PointTransformers [30], Point-MLP [44], and
Point-MAE [45] are three new methods that are not included
in the previous anaylsis. PointTransformers [30] and Point-
MLP [44] use attention and MLP for featureization and Point-
MAE [45] use inpainting as a self-supervision signal. We use

their official pretrained models when available and train the
rest using their official codes.

7.1 Architecture Design
We observe that the most robust architecture on part segmen-
tation is still GDANet [20], which aligns with the results on
ModelNet-C. The result advocates that advanced grouping is
a powerful design choice for robust point cloud processing. It
is also noteworthy that PAConv [14] also shows a competitive
performance, thanks to the position adaptive convolution
mechanism during feature processing.

7.2 Self-Supervised Pretraining
Self-supervised pretraining demonstrates the robustness has
a mixed performance. OcCo [15] and Point-BERT [32] have
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Fig. 12: Illustration of the proposed WOLFMix augmentation.
Point clouds are first locally deformed and then rigidly mixed.
Ground truth labels are mixed accordingly.

no significant effect on robustness, while Point-MAE [45]
achieves the second-best result. It indicates that unsupervised
pretrain has a promising potential in improving point
cloud processing robustness but proper implementation is
required.

8 CONCLUSION

In this work, we establish a comprehensive test suite
PointCloud-C for robust point cloud classification under
corruptions, including ModelNet-C for classification and
ShapeNet-C for part segmentation. We systematically bench-
marked and analyzed representative point cloud classifica-
tion methods. By analyzing benchmark results, we propose
two effective strategies, RPC and WOLFMix, for improving
robustness. As the SoTA methods for point cloud classifi-
cation on clean data are becoming less robust to random
real-world corruptions, we highly encourage future research
to focus on classification robustness so as to benefit real
applications.
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