Benchmark


Metrics

In the PointCloud-C benchmark, we choose DGCNN (Wang et al., 2018), a classic point cloud recognition method, as the baseline to normalize the severity of different corruptions. Inspired by the 2D robustness work (Hendrycks & Dietterich, 2019), we use the mean corruption error (mCE) as the primary metric to measure the robustness of different algorithms. We also report the relative mCE (RmCE) and the clean scores, i.e., clean OA for point cloud classification and clean mIoU for part segmentation. Please refer to our papers for more detailed definitions.


Participation

The PointCloud-C benchmark is live on Paper-with-Code. Please evaluate your models using the official ModelNet-C and ShapeNet-C datasets and update the results in the benchmark.
Alternatively, you can directly send your results and associated method descriptions to jiawei011@e.ntu.edu.sg and lingdong001@e.ntu.edu.sg. We will update your methods manually into our benchmark.


ModelNet-C

Method Reference Standalone mCE ↓ RmCE ↓ Clean OA ↑
DGCNN Wang et al., 2019 1.000 1.000 0.926
PointNet Qi et al., 2017 1.422 1.488 0.907
PointNet++ Qi et al., 2017 1.072 1.114 0.930
RSCNN Liu et al., 2019 1.130 1.201 0.923
SimpleView Goyal et al., 2021 1.047 1.181 0.939
GDANet Xu et al., 2021 0.892 0.865 0.934
CurveNet Xiang et al., 2021 0.927 0.978 0.938
PAConv Xu et al., 2021 1.104 1.211 0.936
PCT Guo et al., 2020 0.925 0.884 0.930
RPC Ren et al., 2022 0.863 0.778 0.930
OcCo (DGCNN) Wang et al., 2021 1.047 1.302 0.922
PointBERT Yu et al., 2021 1.248 1.262 0.922
PointMixUp (PointNet++) Chen et al., 2020 1.028 0.785 0.915
PointWOLF (DGCNN) Kim et al., 2021 0.814 0.698 0.926
RSMix (DGCNN) Lee et al., 2021 0.745 0.839 0.930
WOLFMix (DGCNN) Ren et al., 2022 0.590 0.485 0.932
WOLFMix (GDANet) Ren et al., 2022 0.571 0.439 0.934
WOLFMix (PCT) Ren et al., 2022 0.574 0.653 0.934
WOLFMix (RPC) Ren et al., 2022 0.601 0.940 0.933

*Note: Standalone indicates whether or not the method is a standalone architecture or a combination with augmentation or pretrain.


ShapeNet-C

Method Reference Standalone mCE ↓ RmCE ↓ Clean mIoU ↑
DGCNN Wang et al., 2019 1.000 1.000 0.852
PointNet Qi et al., 2017 1.178 1.056 0.833
PointNet++ Qi et al., 2017 1.112 1.850 0.857
OcCo (DGCNN) Wang et al., 2021 0.977 0.804 0.851
OcCo (PointNet) Wang et al., 2021 1.130 0.937 0.832
OcCo (PCN) Wang et al., 2021 1.173 0.882 0.815
GDANet Xu et al., 2021 0.923 0.785 0.857
PAConv Xu et al., 2021 0.927 0.848 0.859
PointTransformers Zhao et al., 2020 1.049 0.933 0.840
PointMLP Ma et al., 2022 0.977 0.810 0.853
PointBERT Yu et al., 2021 1.033 0.895 0.855
PointMAE Pang et al., 2022 0.927 0.703 0.860

*Note: Standalone indicates whether or not the method is a standalone architecture or a combination with augmentation or pretrain.